AP-RX62N-0A (RX62N CPU BOARD) CS+版 USB ファンクションサンプルプログラム解説

2.1版 2023年10月02日

1. 概要

1.1 概要

本アプリケーションノートでは、弊社の Web サイトにて公開している AP-RX62N-0A のサンプルプログラムのうち 「¥Sample¥ap_rx62n_0a_sample_func_cs」以下にある「USB ファンクションサンプルプログラム」について説明します。 AP-RX62N-0A の「USB ホストサンプルプログラム」につきましては、弊社 Web サイトで公開中の アプリケーションノート「AN1516 CS+版 USB ホストサンプルプログラム解説」を参照してください。

サンプルプログラム	動作内容
AP-RX62N-0A	・USB ファンクション 仮想シリアル通信
USB ファンクション用サンプルプログラム	・ネットワーク通信
	・シリアル通信
	・タイマ割り込み
	・CAN 通信

1.2 接続概要

「USB ファンクションサンプルプログラム」の動作を確認する上で必要な CPU ボードとホスト PC 間の接続例を以下に示します。

詳細な接続に関しては後述の「3.動作内容」を参照してください。

1.3 本サンプルプログラムについて

本サンプルプログラムは、ルネサス エレクトロニクス株式会社提供のミドルウェア及びドライバを AP-RX62N-0A に 移植しています。

また、タイマ、シリアル通信、クロック設定については、ルネサス エレクトロニクス株式会社提供の Peripheral Driver Generator を使用して作成しております。

各ミドルウェア及びドライバの詳細については、以下の資料を参照してください。

● USB ファンクション
・資料名
Renesas USB MCU and USB ASSP USB Peripheral Communications Device Class Driver (PCDC)
● ネットワーク通信
・資料名
ネットワークソフトウェアライブラリ 超小型 TCP/IP プロトコルスタック [高速版]
● CAN 通信
・資料名
RX600 シリーズ CAN アプリケーションプログラミングインターフェース
● タイマ、シリアル通信、クロック設定
・資料名
Peripheral Driver Generator V2.07 リファレンスマニュアル(RX62N グループ)

(※) 資料をダウンロードする際にはルネサス エレクトロニクス株式会社の MYRENESAS への登録が必要となります。

1.4 開発環境について

本サンプルプログラムは、統合開発環境「CS+」を用いて開発されています。 本サンプルプログラムに対応する開発環境、コンパイラのバージョンは次の通りです。

ソフトウェア	バージョン	備考
CS+	v8.04.00	_
RX 用コンパイラ CC-RX	V3.02.00	_

2. サンプルプログラムの構成

2.1 フォルダ構成

サンプルプログラムは下記のようなフォルダ構成になっています。

を参照してください)

2.2 ファイル構成

2.2.1 USB ファンクションサンプルプログラム

USB ホストサンプルプログラムは以下のファイルで構成されています。 本章では、サンプルプログラムの作成にあたって追加したファイルについてのみ記述し、ミドルウェア・ドライバ等の 既存のファイルに関しては説明を省略してあります。

<¥Sample¥ap_rx62n_0a_sample_func_cs¥>		
ap_rx62n_0a_sample_func_cs.mtpj	•••	CS+用プロジェクトファイル
ap_rx62n_0a_sample_func_cs.rcpe	•••	e2studio 用プロジェクトファイル
	_ \	
<pre>< #Sample*ap_rx62n_0a_sample_runc_cs*sr</pre>	c>	
ap_rx62n_0a_sample_func_cs.c	•••	
BoardDepend.h	•••	ホード依存定義ヘッタノアイル
clock_init.c	•••	初期化時クロック設定処理
clock_init.h	•••	初期化時クロック設定処理ヘッダファイル
common.h	•••	共通ヘッダファイル
hwsetup.c	•••	初期化処理
hwsetup.h	•••	初期化処理ヘッダファイル
iodefine.h	•••	内部レジスタ定義ヘッダファイル
non_existent_port_init.c	•••	初期化時ポート設定処理
non_existent_port_init.h	•••	初期化時ポート設定処理ヘッダファイル
resetprg.c	•••	リセット・電源投入後起動処理
sample.c	•••	サンプルプログラムメイン処理
sbrk.c	•••	メモリ確保処理
sbrk.h	•••	メモリ確保ヘッダファイル
sci.c	•••	シリアル処理
sci_main.c	•••	シリアルメイン処理
stacksct.h	•••	スタック定義ヘッダファイル
tmr.c	•••	タイマ処理
typedefine.h	•••	型定義ヘッダファイル
vect.h		割り込みベクタテーブルヘッダファイル
vecttbl.c	•••	割り込みベクタテーブル
	VO	
<pre><#Sample*ap_rx62n_0a_sample_func_cs*sr .</pre>	C¥CA	
can_main.c	•••	CAN メイン処理
<#Sample#ap_rx62n_0a_sample_func_cs#sr	c¥ETł	HER>
ether_main.c		ネットワークメイン処理
<¥Sample¥ap rx62n 0a sample func cs¥sr	c¥US	BFUNCTION>
usbfunction_main.c	•••	USB ファンクションメイン処理

2.2.2 USB COM クラス

USB COM クラスは以下のファイルで構成されています。

<¥Sample¥COM_Class>

comclass.cat comclass.inf dpinst.xml

dpinst_x64.exe

- dpinst_x32.exe
- ・・・ カタログファイル
- ··· USB COM クラス設定用ファイル
- ··· dpinst 用設定ファイル
- ··· 32bitOS 用 dpinst 実行ファイル
- ··· 64bitOS 用 dpinst 実行ファイル

<¥Sample¥COM_Class¥Data>

ap.ico

ap_series.bmp

- ・・・ dpinst 用アイコンファイル
- · · · dpinst 用背景画像ファイル

3. 動作説明

3.1 サンプルプログラムの動作

本サンプルプログラムは下記の動作を行ないます。

● USB ファンクション

USB ファンクションを PC に接続すると、仮想 COM ポートとしてホスト PC の OS に認識され USB シリアルポートとして動作しエコーバックを行います。 ※ USB ファンクション動作については後述の「3.5 USB ファンクション動作」を参照してください。

ネットワーク通信

Ethernet でエコーバックを行います。 ※ ネットワーク動作については後述の「3.6 ネットワーク通信動作」を参照してください。

シリアル通信

SCI0 でエコーバックを行ないます。(送受信割り込み使用) SCI0 から受信をした値を、そのまま SCI0 へ送信します。 シリアルの設定は、38400bps、ビット長 8、パリティなし、ストップビット 1、フロー制御なしです。 動作確認は、ホスト PC 上のターミナルソフト(ハイパーターミナル等)を使用して下さい。

タイマ割り込み

LD2(緑の LED)を 1000msec 間隔で点滅させます。(CMT1 割り込み使用) また、CN1 と CN2 の出力端子から方形波を出力します。 周期とピン番号は Table 「3.1-1 サンプルプログラム周期・ピン番号表」を参照してください。

● CAN 通信

CAN でエコーバックを行います。以下の設定で、受信したデータをそのまま送信します。 CAN の設定は、送信 ID:B'10101010101、受信 ID:B'10101010100、スタンダードフォーマット、 データフレーム、データ長 1byte、 通信速度 500kbps(TSEG1 = 6(7Tq), TSEG2 = 3(4Tq), SJW = 0(1Tq), BSP = 7)です。

CN1/CN2 方形波出力端子一覧	
-------------------	--

コネクタ	ピン番号	ピン名	周期	備考
	5	PCO	20msec	CMT 使用
	6	PC1	20msec	CMT 使用
	7	PC2	20msec	CMT 使用
CNI	8	PC3	20msec	CMT 使用
CNI	9	PC4	20msec	CMT 使用
	10	PC5	20msec	CMT 使用
	11	PC6	20msec	CMT 使用
	12	PC7	20msec	CMT 使用
	27	PEO	10msec	MTU 使用
	28	PE1	10msec	MTU 使用
	29	PE2	10msec	MTU 使用
CND	30	PE3	10msec	MTU 使用
CN2	31	PE4	10msec	MTU 使用
	32	PE5	10msec	MTU 使用
	33	PE6	10msec	MTU 使用
	34	PE7	10msec	MTU 使用

Table 3.1-1 サンプルプログラム周期・ピン番号表

アプリケーションノート AN1517

3.2 メモリマップ

H′0000 0000		H′0000 0000	ワークエリア
		H'0000 1000	SI
	内蔵 RAM		SU
	YOK NA P		B_RX_DESC
H'0001 7FFF			B_TX_DESC
H'0001 8000		Τ. Ι	B_ETHERNET_
	予約		BUFFERS
			В
H'0008 0000		N -	B_2
H'000F FFFF	周辺 I/U レンスタ		B_I B_DTC_table
H'0010 0000	中帝 ┏ОМ 22// バノト	- `, F	B anl
110010 0000	内蔵 ROM SZK ハイト (データフラッシュ)		B hw
H'0010 7FFF	未使用		B rx rsk
H′0010 8000			B ush
	予約		B_ase
1//0075 0000		- ` ŀ	B_pcuc
H 007F 8000 H'007E 9EEE	FCU RAM 領域		R
		_	R_2
H'007F A000	又约		R_usb
	האיר		R_apl
H'007F C000		7 `\ [R_hw
	周辺 I/O レジスタ	N 1	R rx rsk
H'007E EC00		-	R pcdc
1100/11000	予約		R DTC table
H'007F FC00	国辺びの上ジスク	- `` [(土体田)
	同四 1/0 レンベタ	`\	(不使用)
H'0080 0000			
	予約		
H UUEU UUUU	内蔵 ROM 2M バイト		
H'00FF FFFF	(書さ換え専用) <u> </u> ま 体田		
	小区川	-1	
H 0100 0000	予約		
H′0800 0000		H′0800 0000	B_sdram
	SDRAM 空間		R_sdram
			(未使用)
H'1000 0000	予約		
H'FEFF F000	内蔵 ROM	-	
	(FCU ファーム)		
H'FF00 0000	予約		
H'FF7F 0000	内蔵 ROM		
	(ユーザブート)		
		4	
H FF80 CD00	予約		
H'FFF8 0000		H'FFE0 0000	D*
			C*
	古寺でつい	1 F	C* D*
	内蔵 KUM (プログラム POM)	1 F	
	2M バイト	1 F	W *
H'FFFF FFFF			
			TIALDVECT

Fig 3.2-1 ネットワーク通信 + USB ファンクションサンプルプログラムメモリマップ

AN1517 AP-RX62N-0A(RX62N CPU BORAD) CS+版 USB ファンクションサンプルプログラム解説 ©2023 Alpha Project Co., Ltd.

3.3 サンプルプログラムのダウンロード

サンプルプログラムを CPU ボード上で実行するためには、ビルドしたサンプルプログラムの実行ファイルを CPU ボードに ダウンロードする必要があります。

サンプルプログラムのビルド方法および CPU ボードにサンプルプログラムをダウンロードする方法については、 アプリケーションノート「AN1526 RX 開発環境の使用方法(CS+、Renesas Flash Programmer)」に 詳細な手順が記されていますので、参照してください。

3.4 サンプルプログラムの使用方法

サンプルプログラムを実行する際には、「¥Sample¥ap_rx62n_0a_sample_func_cs¥src」にある sample.c において、使用 する機能を選択してください。

それぞれの機能のメイン処理を実行するための関数が用意されていますので、使用する機能の関数を一つ有効にして、 使用しない機能の関数はコメントアウト等を行い処理を無効化してください。 sample.c では、define 定義を使用して処理の有効及び無効を決定しています。 有効にする機能の define 定義を1に設定し、使用しない機能は0に設定することで機能の選択を行います。 複数の機能を同時に動作させることはできないため、有効にする機能は必ず1つだけを選択してください。

3.5 USB ファンクション動作

以下の手順に従い、USB 仮想 シリアルの動作を確認してください。 USB ファンクションの動作確認は、あらかじめ USB 仮想シリアルドライバを PC にインストールしておく必要があります。 USB 仮想シリアルドライバのインストール方法につきましては、「AN178 USB 仮想シリアルドライバ インストールガイド」 を参照してください。

- ① USB ケーブルを使い CPU ボードの USB ファンクションポート(CN4)とホスト PC の USB ポートを接続します。
- ② CPU ボードに電源を投入し、USB ファンクションサンプルプログラムを動作させます。
- ホスト PC 上でターミナルソフト(ハイパーターミナルなど)を起動し、COM ポートの設定を行います。
 その際使用する COM ポートは、「AN178 USB 仮想シリアルドライバ インストール方法」内で確認した仮想 COM ポートを選択してください。
 COM ポートを以ての訳字に本更します。

COM ポートを以下の設定に変更します。

ボーレート	38400bps
ビット長	8bit
パリティ	なし
ストップビット	1bit
フロー制御	なし

- ④ ターミナルソフトを用いて CPU ボードと通信を行い、エコーバック動作を確認してください。
- ⑤ 以上で USB 仮想シリアルの動作確認は終了です。

3.6 ネットワーク通信動作

USB ファンクションサンプルプログラムに実装されたネットワーク通信の確認に必要な推奨環境は以下の通りです。

ホスト PC	PC/AT 互換機
OS	Windows 10/11
LAN ポート	10/100BASE-TX 以上対応の LAN ポート
LAN ケーブル	クロスケーブル

3.6.1 ネットワーク設定

本 CPU ボードのネットワーク設定は以下のようになっています。

IP アドレス	192.168.1.200
サブネットマスク	255.255.255.0
ゲートウェイ	192.168.1.254
MAC アドレス	00-0C-7B-2E-XX-XX
	※ XX-XX の値は製品ごとに異なります。

上記設定のうち、IP アドレス・サブネットマスク・ゲートウェイの設定はサンプルプログラム内の

「¥Sample¥ap_rx62n_0a_sample_func_cs¥src¥ETHER¥t4¥tcp_blocking_sample¥config_tcpudp.c」で行われています。 また、MAC アドレスは EEPROM の先頭 6byte に格納されています。

アドレス	格納値	
先頭アドレス + 0x00	0x00	
+ 0x01	0x0C	
+ 0x02	0x7B	
+ 0x03	0x2E	
+ 0x04	0xXX	
+ 0x05	0xXX	
※ 0xXX の値は製品ごとに異なります		

本製品の MAC アドレスは、弊社が米国電気電子学会(IEEE)より取得したアドレスとなります。 MAC アドレスを変更される際は、お客様にて IEEE より MAC アドレスを取得し、設定してください。

3.6.2 ネットワーク動作設定

以下の手順に従い、ネットワーク動作を確認してください。

- ① LAN ケーブルを使い CPU ボードの LAN コネクタ(CN3)とホスト PC を接続します。
- ホスト PC 上でネットワークの設定を行います。
 CPU ボードの設定に合わせるため、ホスト PC のネットワーク設定を下記の内容に変更してください。

IP アドレス	192.168.1.201
サブネットマスク	255.255.255.0
ゲートウェイ	192.168.1.254

- ③ CPU ボードに電源を投入し、サンプルプログラムを動作させます。
- ④ ホスト PC 上でネットワーク通信が可能なターミナルソフト(ハイパーターミナルなど)を起動し、 TCP/IP 通信を行います。
 TCP/IP の設定は、IP アドレス「192.168.1.200」、ポート番号「50000」です。
- ⑤ ターミナルソフト上で接続が確認できましたら、任意のパケットを送信してください。 エコーバック動作が確認できれば終了です。

4. 開発環境使用時の各設定値

開発環境を使用する際の、AP-RX63N-0A 固有の設定を以下に示します。

表内の「項目番号」はアプリケーションノート

「AN1526 RX 開発環境の使用方法(CS+、Renesas Flash Programmer)」内で示されている

項目番号を示していますので、対応したそれぞれの設定値を参照してください。

ビルド・動作確認方法				
項目名	項目番号	設定値		
出力フォルダ	2-2	ap_rx62n_0a_usbfunc_sample_cs¥DefaultBuild		
モトローラファイル名	2-3	ap_rx62n_0a_usbfunc_sample_cs		
		<pre>¥DefaultBuild¥ap_rx62n_0a_usbfunc_sample_cs.mot</pre>		
アブソリュートファイル名	2-4	ap_rx62n_0a_usbfunc_sample_cs		
		<pre>¥DefaultBuild¥ap_rx62n_0a_usbfunc_sample_cs.abs</pre>		
マップファイル	2-5	ap_rx62n_0a_usbfunc_sample_cs		
		<pre>¥DefaultBuild¥ap_rx62n_0a_usbfunc_sample_cs.map</pre>		

Renesas Flash Programmer を使用した Flash 書き込み方法(シリアルポート(SCI)を使用する方法)				
項目名	項目番号	設定値		
ボード設定(Flash 書き込み)	3-1	ボード:Fig 4-1 を参照 ケーブル接続:CN6		
Flash に書き込むファイル	3-3	ap_rx62n_0a_usbfunc_sample_cs		
		<pre>¥DefaultBuild¥ap_rx62n_0a_usbfunc_sample_cs.mot</pre>		
ボード設定(動作)	3-4	Fig 4-3 を参照		

Renesas Flash Programmer を使用した Flash 書き込み方法(USB ブートモードを使用する方法)				
項目名	項目番号	設定値		
ボード設定(Flash 書き込み)	3-5	ボード:Fig 4-2 を参照 ケーブル接続:CN4 (USB miniB)		
ツール選択	3-6	[USB Direct]		
Flash に書き込むファイル	3-7	ap_rx62n_0a_usbfunc_sample_cs		
		<pre>¥DefaultBuild¥ap_rx62n_0a_usbfunc_sample_cs.mot</pre>		
ボード設定(動作)	3-8	Fig 4-3 を参照		

Fig 4-1 Flash 書き込み(シリアルポート使用)時のボード設定

E1 エミュレータ/E2 エミュレータ Lite を使用したデバッグ方法				
項目名	項目番号	設定値		
ボード設定	4-1	Fig 4-4 を参照		
JTAG クロック	4-10	E1 エミュレータを使用する場合: 16.5(MHz)		
		E2 エミュレータ Lite を使用する場合: 6.00(MHz)		
EXTAL クロック	4-11	12(MHz)		

Fig 4-4 E1 エミュレータ/E2 エミュレータ Lite デバッグ時のボード設定

ご注意

- ・本文書の著作権は株式会社アルファプロジェクトが保有します。
- 本文書の内容を無断で転載することは一切禁止します。
- ・本文書に記載されているサンプルプログラムの著作権は株式会社アルファプロジェクトが保有します。
- ・本サンプルプログラムで使用されているミドルウェアおよびドライバの著作権はルネサス エレクトロニクス株式会社が保有します。
- ・本文書に記載されている内容およびサンプルプログラムについてのサポートは一切受け付けておりません。
- ・本文書の内容およびサンプルプログラムに基づき、アプリケーションを運用した結果、万一損害が発生しても、弊社では一切責任を負いませんのでご了承ください。
- ・本文書の内容については、万全を期して作成いたしましたが、万一ご不審な点、誤りなどお気付きの点がありましたら弊社までご連絡 ください。
- ・本文書の内容は、将来予告なしに変更されることがあります。

商標について

- ・RX はルネサス エレクトロニクス株式会社の登録商標、商標または商品名称です。
- ・CS+はルネサス エレクトロニクス株式会社の登録商標、商標または商品名称です。
- ・E1 エミュレータはルネサス エレクトロニクス株式会社の登録商標、商標または商品名称です。
- ・E2 エミュレータ Lite はルネサス エレクトロニクス株式会社の登録商標、商標または商品名称です。
- ・Renesas Flash Programmer はルネサス エレクトロニクス株式会社の登録商標、商標または商品名称です。
- ・Windows®10、Windows®11は、米国 Microsoft Corporation.の商品名称です。
 本文書では下記のように省略して記載している場合がございます。ご了承ください。
 Windows®10は Windows 10もしくは Win10
 Windows®11は Windows 11もしくは Win11
- ・その他の会社名、製品名は、各社の登録商標または商標です。

ALPHA PROJECT

株式会社アルファプロジェクト

〒431-3114 静岡県浜松市中央区積志町 834 https://www.apnet.co.jp E-Mail: query@apnet.co.jp